
the language machine – from lambda to language and grammar

The language machine is an efficient and usable toolkit for language and grammar
that is published as free software under the Gnu GPL. At its core is an engine for
applying unrestricted grammatical substitution or rewriting rules.

In effect the language machine contains the lambda calculus: functions in the lambda
calculus and its near relatives can be represented and evaluated by normal order
reduction without recourse to side-effect actions, using only a limited subset of rules
in the language machine - rules which treat functions as grammatical substitutions.

It follows that the system of rules in the language machine is Turing-complete, and
that the languages it can in theory recognise are the languages that can be generated
by Chomksy type-0 grammars with unrestricted generative rules.

The lm-diagram is a diagram which shows what happens as rules are applied in the
language machine, and so it can in theory display any conceivable process of
evaluation or analysis in the lambda calculus or the language machine.

The limited set of rules that represent functions in the lambda calculus can be
extended with unrestricted rules that recognise and substitute nested sequences of
grammatical symbols and variable bindings. Such rules are the analytic equivalent of
the rules in Chomsky type-0 generative grammars, extended with variable bindings.

All rule applications in the language machine are triggered by mismatch between a
goal symbol and an input symbol. Rules can be tied to both of these, to the input
symbol alone as bottom-up rules, or to the goal symbol alone as top-down rules. Rules
can recurse to left, to right and to centre, with left, right, and bracket priority levels.
Variable bindings may be used to record the analysis and construct transformations.

The input symbol in each mismatch event may come from an external stream, or from
a sequence of symbols and variable bindings that has been produced during the
substitution phase of some other rule application. Rules that do pure computation
consume no external symbols.

A distinction is commonly made between generative and analytic approaches to
grammar: almost all work in computational linguistics derives ultimately from Noam
Chomksy's generative model of grammar.

If rules in the language machine tend to consume input symbols so as to reduce them
to a small number of nonterminal symbols which represent grammatical concepts,
they can be said to operate as an analytical grammar.

If rules in the language machine tend to generate more symbols than they consume,
they can be said to operate as a generative engine.

In practice, useful applications of the language machine combine grammatical
analysis with generative or computational interpretation using side-effect actions and
external calls. But if generative grammars do exist as more than mere abstractions of
thought, they can be directly implemented by rules in the language machine, whereas
generative grammars cannot themselves directly perform any kind of analysis.

Rules in the language machine are simple replacements of one pattern by another,
where nesting is permitted in both phases of rule application (recognition and
substitution), where each phase may produce any number of symbols and where
either phase may be empty. As simple replacements, they may provide a fruitful
model for physical and causal processes beyond language itself, a model that can be
visualised in the lm-diagram and that can be shown to be Turing-complete.

So the language machine is directly usable free software, a complete basis for
grammar, and a starting point for new directions in language research.

© Copyright Peri Hankey 2005 - mpah at thegreen dot co dot uk – redistribution licensed under Gnu FDL
http://languagemachine.sourceforge.net the language machine – a toolkit for language and grammar

